LEIVAS

NASA Technical Memorandum 89823

The Hypercluster: A Parallel Processing
Test-Bed Architecture for Computational
Mechanics Applications

N87-2C767

iE K TSTER: A
a5A-TM-89823) THE EYPEBCLUSIEE: |
é:giixix PROCESSING TESI-EEL aacaéigggggz
FCR CCMPUTATICNAL MECEABICS 2FELI to8s snclas
(sash) 11 G3/62 45316

Richard A. Blech
Lewis Research Center
Cleveland, Ohio

Prepared for the

Summer Computer Simulation Conference
sponsored by the Society for Computer Simulation
Montreal, Canada, July 27-30, 1987

NASA




E-3469

THE HYPERCLUSTER:

A PARALLEL PROCESSING TEST-BED ARCHITECTURE

FOR COMPUTATIONAL MECHANICS APPLICATIONS

Richard A. Blech
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

The development of numerical methods and soft-
ware tools for parallel processors can be aided
through the use of a hardware test-bed. The test-bed
architecture must be flexible enough to support inves-
tigations into architecture-algorithm interactions.
One way to implement a test-bed is to use a commercial
parallel processor. Unfortunately, most commercial
parallel processors are fixed in their interconnection
and/or processor architecture. In this paper, we
describe a modified n-cube architecture, called the
hypercluster, which is a superset of many other pro-
cessor and interconnection architectures. The hyper-
cluster is intended to support research into parallel
processing of computational fluid and structural
mechanics problems which may require a number of dif-
ferent architectural configurations. An example of
how a typical partial differential equation solution
algorithm maps on to the hypercluster is given.

INTRODUCTION

Two research areas which are critical to the
future progress of aerospace technology are computa-
tional fluid mechanics {CFM) and computational struc-
tural mechanics {(CSM). The practical limits of
applications in both of these areas are set by the
state-of-the-art in computer architecture and soft-
ware techniques. Parallel processing is an architec-
tural concept which has the potential for vastly
improving the performance of future computer systems.
However, the use of parallel processing architectures
will require a reasessment of numerical methods and
software techniques that are currently used for CFM/
CSM. Likewise, CFM/CSM requirements may impact future
parallel architectures.

Most CFM/CSM problems require the numerical solu-
tion of a system of nonlinear partial differential
equations (PDE). There are many algorithms for selv-
ing systems of POE's on computers. The ideal algo-
rithm for a given application minimizes computation
time and the amount of memory required. A consider-
able amount of research has been done in this area for
uniprocessor computers, resulting in many accepted
approaches for solving various PDE systems. The con-
tinuing demand for more computing power and the emer-
gence of supercomputer architectures employing
parallel processors has prompted research into new
approaches to solving systems of PDE's (Ortega and
Voigt 1985). The goal of that research is the devel-
opment of higher performance CFM/CSM codes that can
effectively utilize the new parallel architectures.

The development of algorithms for parallel pro-
cessors is not a straightforward task. Algorithms for
parallel processors must be able to be partitioned
into independent tasks that can be allocated to multi-

ple processors for simultaneous execution. A high
degree of parallelism does not guarantee higher per-
formance, however. The development of parallel algo-
rithms can be complicated by the hardware aspects of
parallel processors. The communication mechanism
between processors is one example. The algorithm
should be analyzed to determine if fast, tightly
coupled communication between processors i$ required,
or if a slower, loosely coupled mechanism will
suffice.

The individual processor architecture can also
impact the performance of an algorithm. For example,
a vector processor architecture operates most effec-
tively by performing a single mathematical operation
on large arrays of data. The performance of a vector
processor is dependent on the length of the data
arrays, or vectors. Therefore, it is desirable to
develop algorithms which make use of long vector oper-
ations. If parallel vector processors are used, then
any partitioning of the numerical method should avoid
shortening the vector length to the point of deqrad-
ing performance.

The memory hierarchy employed in a parallel pro-
cessor is another consideration in the development of
parallel algorithms. The use of local processor
memory and/or global shared memory are examples of
memory hierarchy within a parallel architecture.

Cache memory, interleaved memory and mass storage are
levels of the memory hierarchy local to the processors
in a parallel processing system. An efficient paral-
lel algorithm must make optimum use of the existing
memory hierarchy. This requires maximizing the amount
of computation occurring in the lowest (i.e., fastest)
level of the hierarchy.

To summarize, the development of parallel algo-
rithms requires cognizance of a large number of hard-
ware and architectural parameters. This makes the
evaluation of algorithm performance a critical step
in the development process. To some extent, this can
be done analytically. A detailed analytical perform-
ance evaluation would be cumbersome, however, espe-
cially if the number of hardware and architectural
parameters is high. A preferable approach would he
the evaluation using a hardware test-bed. Then hard-
ware and architectural parameters could be directly
implemented, or efficiently emulated.

A research effort at the NASA Lewis Research
Center is devoted to studying the application of par-
allel processing to CFM/CSM. This effort is an out-
growth of work previously done on the Real-Time
Multiprocessor Simulator (RTMPS) project (Arpasi 1985;
Blech and Arpasi 1985; Cole 1985; Arpasi and Milner
1985). To facilitate the investigation of algorithm-
architecture interactions and the evaluation of soft-
ware tools, a reconfigurable hardware test-bed is




being assembied. This paper discusses the require-
ments driving the design of the parallel processing
test-bed and describes the test-bed architecture being
implemented at NASA Lewis. An example of how a typi-
cal PDE solution algorithm would map on to the archi-
tecture is presented.

Parallel Processing Test-Bed Requirements

In general, the purpose of a parallel processing
test-bed is to support the development of parallel
algorithms and the evaluation of software tools.

Since many of the architectural requirements for a
particular algorithm or software tool usually are not
known, the test-bed must provide a degree of flexibil-
ity in configuration. This suggests some of the
following desirable capabilities for any parallel pro-
cessing test-bed.

(1) Ability to incorporate processors of various
architectures within the parallel processing configur-
ation. This allows evaluation of how the architecture
and performance of the individual processing elements
within a parallel system architecture can affect over-
all performance. Some processor architectural charac-
teristics to be considered are vector processing
capability, memory configuration (cache memory, inter-
leaving), and specialized coprocessors (floating-
point, graphics).

(2) Ability to emulate a wide variety of paral-
lel processing architectures. The impact of inter-
processor communication overhead is a critical issue
in parallel processing research. The ability to vary
the system architecture (and thereby the interpro-
cessor communication paths) allows investigations into
architecture-algorithm interactions.

(3} Ability to modify the 1/0 structure of the
parallel processor. Input and/or output processing
are the dominant time consumers for some applications.
The abitity to modify or augment the 1/0 structure
allows researching of distributed database techniques
and partitioning of the 1/0 task.

(4) Capability to expand to a large scale
parallel system. This is necessary to evaluate algo-
rithms requiring a large number of processors for
effectiveness.

The usefulness of a parallel processing research
test-bed having the above characteristics was recog-
nized by researchers involved in IBM's Research Paral-
tel Processor Project (RP3) (Pfister 1985). However,
the RP3 architecture is neither commercially available
nor easy to replicate. Commercial versions of some
parallel processing architectures have recently become
available. In most cases, the architecture is fixed
and/or the user has limited capabilities for architec-
tural or processor modifications. For example,
Alliant's FX/8 machine (Alliant Computer Systems 1985)
has multiple vector processors interconnected through
shared memory. However, the current architecture is
limited to eight processors., The B8N Butterfly
{Crowther et al. 1985) 4“as a large number of scalar
processors communicating through shared memory, but
lacks vector processing capability. Flexible Com-
puters' FLEX/32 (Manuel 1985) combines both message
passing and shared memory communication mechanisms,
but again lacks vector processing capability.

The n-cube architecture, also known as the hyper-
cube, is becoming a popular architecture due to its

expandability and capability to emulate other archi-
tectures. A hypercube that has vector processing
capability at each node (two commercial versions of
which are discussed in Gustafson et al. 1986 and
Robinson 1985) meets several of the requirements for

a parallel orocessing test-bed. The strong points
are: 1) an architecture which is expandable in a
systematic manner, 2) vector and scalar processing
capability at each node, and 3) the ability to emulate
a limited number of other architectures. Emuiation

of shared memory architectures on the hypercube is
difficult, however. This is especially true for
applications exhibiting a fine-grained parallel struc-
ture, such as linear algebra. The difficulty can be
traced to the interprocessor communications in the
hypercube, which exhibit high overhead for two rea-
sons. First, a routing algorithm is required for all
but those applications which directiy map on to the
hypercube network. This consumes processor resources
since the communication path from one processor to
another must be calculated. Second, most commercial
versions of the hypercube implement the network inter-
connections with fixed serial links. The net through-
put rate on these links is relatively low when
packetization and software protocol is taken into
account. In addition, the 1ink connections cannot be
reconfigured.

Hypercluster Architecture

A modified version of the hypercube architecture,
called the hypercluster, is proposed to overcome the
difficulties described above. The hypercluster
retains the hypercube network structure between pro-
cessor nodes, but each node now consists of multiple
processors communicating through a shared memory.

This concept is illustrated in Figure 1, for a dimen-
sion 2 (D-2) cube. Each circle Tabelled 'M' repre-
sents a shared memory at a node. Each square labelled
'P' is a processing element interconnected to the
shared memory in some fashion. Processors can have
local memory in addition to shared memory. Communi-
cation links between nodes form the hypercluster
network.

The hypercluster supports both tightly coupled
interprocessor communication via shared memory {(within
a node) and loosely coupled communication through the
hypercube network (between nodes). The hypercluster
is expanded in the same manner as the hypercube, with
processor clusters replacing the normal single pro-
cessor node. An arbitrary number of processors may
be assigned to a cluster, limited only by the hardware
constraints of the shared memory interconnect and/or
power requirements.,

Figure 2 shows a more detailed diagram of the D-2
hypercluster configuration being implemented at the
NASA Lewis Research Center. The nodes consist of
multiple board-level computers interconnected by a
commercial bus. Although a bus is not the highest
performance shared-memory interconnect mechanism
available, it does allow for convenient implementa-
tion. 1In addition, the use of a commercial bus allows
a variety of processor architectures to be incorpo-
rated within a node. Thus each node has an architec-
tural 'personality' determined by the type of
processor boards connected to the bus. The NASA Lewis
D-2 hypercluster has three nodes with a vector per-
sonality and one node with a scalar personality. Each
of the vector nodes uses four board-level vector pro-
cessors, while the scalar node uses four general pur-
pose microcomputer boards. The incorporation of




vector processors is crucial in the investigation of
CFM/CSM algorithms because many CFM/CSM algorithms
contain large arrays of independent computations that
are best handled by a vector architecture. The avail-
ability of multiple vector processors allows very
large arrays of calculations to be broken up and dis-
tributed for a parallel solution.

There are two types of communication links.
Internode communication links form the hypercluster
network as described before. Additional links provide
communication paths between each node and a front-end
processor (FEP). The FEP allows a user to interact
with the hypercluster. Each communication link con-
sists of two control processors (CP) interconnected
by a dual-port memory. The CP's coordinate communi-
cation over the links and supervise the operation of
processors within a node. Executive software in each
CP performs these functions. For the D-2 hyper-
cluster, it is both practical and advantageous to have
a communication link between each node and the FEP.
However, as the hypercluster is expanded to more
nodes, the associated size and cost constraints make
this approach impractical. In that case, most nodes
will not have an FEP link. Software will then be
necessary to route information from nodes with an FEP
link to those without.

Shared memory within a node consists of memory
boards connected to the node's bus, and/or dual-ported
memory on the processor boards. Dual-ported memory
has become a standard feature on many commercial com-
puter boards, and is particularly useful in the hyper-
cluster environment. Through software, memory seg-
ments can be allocated as local to a processor, globatl
to all processors in a node, or a combination of local
and global segments. This allows emulation of the
different memory hierarchies used in paraliel pro-
cessing systems.

Each node of the hypercluster can have its own
Tocal 1/0 capability. For example, each node can have
a disk control processor and hard disk drive. This
arrangement would allow research in distributed I/0
and database techniques, aimed at eliminating the 1/0
bottleneck present in many applications.

An Algorithm Example

The alternating direction implicit (ADI) algo-
rithm is a technique commonly used for the solution
of partial differential equations (PDE) (Gerald 1980).
The two stages of the ADI algorithm are shown in
Figure 3 for a 4 by 4 grid.

In the first stage, equations are formed which
are implicit (i.e., depend on current time step infor-
mation) in the X direction only. Thus a coefficient
matrix A and vector b can be generated to form the
system Ax = b which describes one row of points.
Several such systems are formed to describe the entire
grid. The matrix A is a tridiagonal matrix (the
matrix is block tridiagonal if several PDE's are
solved at each grid point). The second stage of the
ADI algorithm begins after the equations from the
first stage are solved. It is identical to the first
stage except that now the equations are implicit in
the Y direction only.

Each system of equations for a row or column is
independent (in the current time step) of information
from neighboring rows or columns. Only information
from past time steps for neighboring rows or columns

is used. This characteristic of the ADI algorithm
makes it particularly attractive for solution on a
parallel processor. The solution of rows or columns
can be done in parallel. Each row or column can be
allocated to a processor, if sufficient processors are
available. Otherwise, groups of rows or columns must
be formed, where the number of groups would equal the
number of available processors.

The first stage of the ADI algorithm would map
onto the hypercluster as shown in Figure 4. For the
simpie 4 by 4 grid and D-2 hypercluster shown, each
row would be solved on a hypercluster node. If the
grid were larger, groups of rows would be assigned to
the node, or more nodes could be added. The processor
allocation described thus far could be accomplished
on any hypercube implementation. The advantage of the
hypercluster architecture for the ADI algorithm is the
ability to apply the tightly coupled multiple proces—-
sors within each node to the simultaneous solution of
the equation systems. The allocation of rows to
hypercluster nodes results in one or more block tri-
diagonal equation systems which must be solved at each
node. After the parallel solution of the equation
sets is completed, information to and from neighbor-
ing rows is transmitted between nodes via the hyper-
cube network. Then the second stage of the ADI
algorithm can proceed with columns allocated to hyper~
cluster nodes. After solution of both stages, the
results are checked for convergence. If convergence
has not been achieved, the whole process is repeated.
The parallel ADI algorithm is outlined by the psuedo-
code in Figure 5,

The ADI algorithm is only one of many algorithms
available to solve a system of partial differential
equations. The partitioning of the calculations for
the ADI algorithm described above is one of many pos-
sible methods. This example has been given only to
demonstrate the usefulness of the hypercluster archi-
tecture for implementing a particular algorithm.

A number of parallel processing algorithms for
solving partial differential equations have been pro-
posed in Hockney and Jesshope 1981. Some of these
algorithms are also vectorizable. Future work using
the hypercluster as a test-bed will attempt to deter-
mine which alqorithms (combined with the appropriate
architecture) are optimum for CFM/CSM applications.

CONCLUDING REMARKS

The hypercluster architecture is intended to pro-
vide a reconfigurable test-bed on which various paral-
lel processing algorithms, programming and operating
tools can be developed. There is still a considerable
amount of uncertainty as to the optimum parallel pro-
cessing architecture for specific applications such
as CFM and CSM. There is also a definite lack of pro-
gramming and operating software that will allow
researchers to easily take advantage of parallel pro-
cessing. Future work using the hypercluster test-bed
will attempt to address some of these issues. It will
allow CFM/CSM research at the NASA Lewis Research
Center to readily adapt to the rapidly developing
discipline of parallel processing.

REFERENCES

1. Ortega, J. M. and Voigt, R G., "Solution of
Partial Differential Equations on Parallel and
Vector Computers,” SIAM Review, Vol. 27, No. 2,
June 1985, .




. Arpasi, D. J. "Real-Time Multiprocessor
Programming Language (RTMPL) Users Manual," NASA
Technical Paper 2422, June 1985.

. Blech, R. A. and Arpasi, D. J., " Hardware for a
Real-Time Multiprocessor Simulator, " NASA TM
83805, January 1985,

. Cole, G. L., "Operating System for a Real-Time
Multiprocessor Propulsion System Simulator," NASA
Technical Paper 2426, January 1985.

. Arpasi, D. J. and Milner, E. J., "Partitioning
and Packing Mathematical Simulation Models for
Calculation on Parallel Computers," NASA TM
87170, November, 1985.

. Pfister, G. F., et. al., "The IBM Research
Parallel Processor Prototype (RP3): Introduction
and Architecture," Proceedings of the 1985
International Conference on Parallel Processing,
August 1985.

. Alliant Computer Systems, "FX/Series Product
Summary," June 1985,

10.

11.

12.

13.

. Crowther, W. et. al., "Performance Measurements

on a 128-Node Butterfly Parallel Processor,”
Proceedings of the 1985 International Conference
on Parallel Processing, August 1985,

. Manuel, Thomas, "Parallel Machine Expands

Indefinitely,” Electronics Week, May 13, 1985

Gustafson, J. et. al., " The Architecture of a
Homogeneous Vector Supercomputer," Proceedings of
the 1986 International Conference on Parallel
Processing, August 1986.

Robinson, Brian, “Hypercube Sprouts Vector
Processors to Chalienge Supercomputers,"
Electronic Engineering Times, April, 1985

Gerald, C. F., "Applied Numerical Analysis,"
Addison-Wesley Publishing Co., 1980.

Hockney, R. W. and Jesshope, C. R., “Parallel
Computers," Adam Hilga Ltd., Bristol, 1981.




= PROCESSOR M = SHARED MEMORY
FIGURE 1. - TWO-DIMENSIONAL (D-2) HYPERCLUSTER CONFIGURATION.



TO FEP T0 FEP

P CP
G SHARED MEMORY &
CONTROL PROCESSOR

SCALAR PROCESSOR (")
VECTOR PROCESSOR

FRONT-END PROCESSOR

Y O

(CP

=
I

P

w
©
nm u

P
FEP

() INTERNODE LINKS < q'b

-EB—-—&-(
sp
(m) Fep/NoDE LINkS< (M)

T0 FEP TO FEP
FIGURE 2. - NASA LEWIS IMPLEMENTATION OF D-2 HYPERCLUSTER.




X DIRECTION ————>

STAGE 1

N () () (O
Y DIRECTION O O O O

O O O O
O O O O

O O O O

U U U

STAGE 2

FIGURE 3. - SWEEP PATTERN FOR ALTERNATING DIRECTION
IMPLICIT METHOD.




FIGURE 4.- MAPPING OF FIRST-STAGE OF ADI ALGORITHM ON
HYPERCLUSTER.




REPEAT
FOR ROW = 1 TO NROWS DO IN PARALLEL
BEGIN
CALCULATE COEFFICIENTS OF MATRIX A, VECTOR b
SOLVE AX¥*1 = b VIA PARALLEL ALGORITH
END
TRANSFER DATA TO NEIGHBORING NODES
FOR COLUMN = 1 TO NCOLUMNS DO IN PARALLEL
BEGIN
CALCULATE COEFFICIENTS OF MATRIX A, VECTOR b
SOLVE AXK'2 =b VIA PARALLEL ALGORITHM
END
TRANSFER DATA TO NEIGHBORING NODES
UNTIL AR < €

FIGURE 5. - PSEUDOCODE FOR PARALLEL ADI ALGORITHM.



1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

NASA TM-89823

4. Title and Subtitle 5. Report Date

The Hypercluster: A Parallel Processing Test-Bed

Architecture for Computational Mechanics 6. Performing Organization Code
Applications 505-62-21
7. Author(s) 8. Performing Organization Report No.
Richard A. Blech E-3469

10. Work Unit No.

9. Performing Organization Name and Address

11. Contract or Grant No.
National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Techni cal Memorandum
National Aeronautics and Space Administration 14, Sponsoring Agency Code

Washington, D.C. 20546

15. Supplementary Notes

Prepared for the Summer Computer Simulation Conference sponsored by the Society
for Computer Simulation, Montreal, Canada, July 27-3C, 1987.

16. Abstract

The development of numerical methods and software tools for parailel processors
can be aided through the use of a hardware test-bed. The test-bed architecture
must be flexible enough to support investigations into architecture-algorithm
interactions. One way to implement a test-bed is to use a commercial parallel
processor. Unfortunately, most commercial parallel processors are fixed in their
interconnection and/or processor architecture. 1In this paper, we describe a
modified n-cube architecture, called the hypercluster, which is a superset of
many other processor and interconnection architectures. The hypercluster is
intended to support research into parallel processing of computational fluid and
structural mechanics problems which may require a number of different architec-
tural configurations. An example of how a typical partial differential equation
; solution algorithm maps on to the hypercluster is given.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
Parallel processing; Fluid mechanics; Unclassified - unlimited
Structural mechanics STAR Category 62
19. Security Classif. (of this report) 20. Security Classit. (of this page) 21. No. of pages 22. Price*
Unclassified Unclassified 10 A0?2

"For sale by the National Technical Information Service, Springfield. Virginia 22161




